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Abstract. Using the recent work of Hartelman, van der Maas, and Wagenmakers, we demonstrate the
use of invariant stochastic catastrophe models in finance for modeling net flows (the difference between
purchases and redemptions of fund shares) of U.S. mutual funds. We validate Goetzmann et al. and others’
work concerning the importance of sentiment variables on stock fund flows. We also answer some of the
questions Goetzmann et al. and Brown et al. pose at the end of their respective papers. We end with
possible experiments for experimental economists and sociophysicists.
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1 Introduction

During the past ten years there has been a growing in-
terest in the hows and whys of net flows of U.S. mutual
funds (the difference between purchases of fund shares
and redemptions of fund shares). Many of these studies
([1-3] are a small sample) have focused on the determi-
nants of flows into individual mutual funds or groups of
mutual funds. Most of these studies have found repeat-
edly the importance of prior-period returns on the next
period’s flows [1,2] and the importance of the rankings of
risk-adjusted returns from prior period(s) on the current
period’s flows [3].

There have been relatively few papers other than those
of Goetzmann et al. [4] and Brown et al. [5] that have
looked at fund flows from a broader perspective, e.g., all
stock fund flows, all bond fund flows, all money market
fund flows, all gold or precious metals fund flows, and all
bear fund (a fund whose price rises when the stock market
falls) flows.

Goetzmann et al. and Brown et al. took this broader
approach, since they were looking for a priceable senti-
ment variable as hypothesized by de Long et al. [6]. Both
Goetzmann et al. and Brown et al. found that sentiment
or behavioral variables had a significant impact on stock
fund flows and that more than likely “a pervasive investor
sentiment variable” does exist [4], but they found no solid
proof of a priceable sentiment variable [5].

In this paper we build on the work of Goetzmann et al.
and Brown et al. by including their sentiment variables,
as well as other variables, in our study of stock mutual
fund flows by using an invariant stochastic catastrophe
model that was developed by Hartelman [7] and tested by
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Ploeger et al. [8], van der Maas et al. [9], and Wagenmakers
et al. [10,11].

We find the cusp catastrophe model provides a fairly
simple and elegant model of investor behavior on both a
daily and monthly basis. And while we have evidence that
a butterfly model may better describe the daily data, the
results for the monthly data are inconclusive, pointing to
the need for more tests.

The monthly model relies on the prior month’s returns
of the Dow Jones Industrial Average (DJIA) as the normal
variable, with the bias variables being the monthly down
volume of the New York Stock Exchange (NYSE) and the
monthly net flows of money market mutual funds.

Our interpretation of this model is that U.S. mutual
fund investors (about 20% of the U.S. stock investor uni-
verse) tend to behave no differently than the remaining
80% of the U.S. stock investor universe. By this we mean
that mutual fund investors follow stock price movements
(the normal variable) as they make their rebalancing and
investment decisions, while the sentiment/splitting vari-
ables (the down volume on the NYSE and flows in or out of
money market accounts) measure an investor’s willingness
to commit money to the stock market versus the bond or
other markets. This willingness may arise, as both Goetz-
mann et al. and Brown et al. have noted, because of views
about the future equity premium or because the investor
is following a common portfolio insurance strategy.

In our daily model we fit a cusp model similar to the
monthly model above, i.e., lagged stock returns on the
normal side and sentiment variables on the splitting side.
In this case the splitting variable does not include a vol-
ume variable but does include the net flows of bear funds
(funds that benefit when stock prices fall).
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From our findings we think, like Goetzmann et al. and
Brown et al., that there is a priceable sentiment variable,
but that it is nonlinear in nature and more than likely
stochastic — as Goetzmann et al. mention in their pa-
per. Stated in a stronger manner, we think looking for
a priceable sentiment variable using a linear version of
APT-as Goetzmann et al. do-or a linear factor model-as
Brown et al. do-will not succeed because of the nonlin-
earity of the data. We favor an interpretation similar to
that of Shefrin [12]: the pricing kernel exists in two pieces-
one term being sentiment and the other being an expres-
sion that depends on economic fundamentals. We think
the sentiment term Shefrin describes, with its bimodality,
bears a strong resemblance to the features we find in U.S.
mutual fund flows and their multimodality.

In Section 2 we review the data used. Section 3 re-
views both Cobb et al.’s [13-17] and Hartelman’s [7] work
on stochastic catastrophe theory (SCT), while Section 4
goes over the results of our models. Section 5 contains our
conclusions.

2 Data used

The variables we use in this paper are: monthly and daily
net flows of U.S. stock mutual funds, monthly and daily
returns of the DJIA, monthly and daily net flows of money
market mutual fund accounts, monthly and daily volume
of the NYSE (in total and in its two pieces: up volume
and down volume), monthly retail sales data, daily gold
fund net flows, daily and monthly bond fund net flows,
daily net flows of international stock funds, and daily net
flows of bear funds.

We use this particular set of variables for several dif-
ferent reasons. First, we had already built, prior to the
work in this paper, a one-month-ahead forecast model of
stock fund net flows that uses all the monthly variables
above, with the exception of the bond fund data and the
up and down volumes of the NYSE.

Secondly, Goetzmann et al. and Brown et al. have
found all of the daily variables listed above (with the ex-
ception of the NYSE volume variables) helpful in explain-
ing the net flows of stock funds. And, a number of studies
such as Walther [1] and Del Guercio and Tkac [3] have
demonstrated the importance of securities returns on fund
flows.

Our variable list, then, covers the most common factors
we and others have used to explain stock fund flows, in
particular the three sentiment variables (money market
account flows, gold fund flows, and bear fund flows) that
Goetzmann et al. and Brown et al. have found significant.

As mentioned above, our monthly data cover the pe-
riod November 1984 through August 2005, and our daily
data go from April 3, 2000, through December 30, 2004.
The sources of our monthly data include the Investment
Company Institute (ICI) for monthly flows of stock, bond,
and money market funds and Reuters for retail sales data,
the month-end prices of the DJIA, and the NYSE volume
figures.
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The sources of our daily data are Lipper! for all fund
flows data and Reuters for daily prices of the DJTA and
the NYSE volume figures.

For the monthly data, since we are working with more
than 20 years of observations, we inflation-adjusted the
flows, NYSE volume, and retail sales by using Bureau of
Labor Statistics methods, so we could state everything in
current (2005) dollars.

Since inflation has been relatively low over the period
of our daily model, we did not inflation-adjust any vari-
ables there.

Only three of the monthly variables — money mar-
ket fund flows, DJIA returns, and bond fund flows (the
first two are show in Fig. 1) — are stationary as can be
confirmed from visual inspection. We also confirmed the
stationarity of these series via the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS)? and the Leybourne and McCabe
(LMC)? tests. The remaining monthly variables (two of
which are shown in Fig. 2) are not stationary.

To remove the trend in these series we fit a Henderson
trend-cycle* to the data and worked with the residuals
from our model fitting. Figure 3 shows the effectiveness of
the Henderson fit, i.e., both the U.S. stock fund flows and
the retail sales now appear stationary.

We also confirmed the results of our transformation
by using both the KPSS and LMC tests, finding all the
transformed data had indeed become stationary.

The importance of stationarity to our cusp model was
made clear by a referee’s comment. The referee wrote that
nonstationarity can lead to spurious detection of catastro-
phe models, so stationarity is necessary to properly inter-
pret the results of our tests and fits.

For the daily data there was no need to fit the Hender-
son model, since our tests for stationarity via KPSS and
LMC revealed all the daily variables were indeed station-
ary.

! Lipper, a wholly owned subsidiary of Reuters, collects and
analyzes data on more than 100 000 mutual funds world-wide
and through its sister firm — Hedge World — collects data on
more than 6000 hedge funds globally.

2 The KPSS test [18] is a Lagrange multiplier test for the
null hypothesis that the error variance in the random walk
component of the series is zero. The version we used is in the
R package timeseriesTests.

3 The LMC test [19] is based on the same model as the KPSS
test, with its difference being how the nonparametric estimator
of the long-run variance is computed. The test was written by
the author using the R language.

* The Henderson trend-cycle as defined in Statistica® is:
“The X-11 [census] seasonally adjusted series is smoothed via
a variable moving average procedure. In general, the so-called
Henderson curve moving average is applied, which is a weighted
moving average with the magnitudes of the weights following
a bell-shaped curve.” The reference given by Statistica® for
the Henderson methodology is Shiskin, J., Young, A.H., and
Musgrave, J.C. (1967): “The X-11 Variant of Census Method
IT Seasonal Adjustment,” Technical Paper No. 15, Bureau of
the Census, U.S. Department of Commerce.
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Plot of Monthly Money Market Flows
November 1984 thru August 2005
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Plot of Monthly Dow Jones Industrial Returns
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Fig. 1. Plot of monthly money market mutual fund net flows and monthly dow jones industrial average returns.

Plot of Inflation Adjusted Stock Net Flows
November 1984 thru August 2005
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Plot of Retail Sales
November 1984 thru August 2005
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Fig. 2. Plot of U.S. stock fund net flows and retail sales.

3 Catastrophe models

Since the initial work of Thom [20], Zeeman [21], and
others [22,23], catastrophe theory has found a home in
physics and chemistry but has been basically ignored by
economists until recently for a number of reasons. There
have been, however, a few prominent exceptions. One is a
paper by Zeeman [24], which was roundly criticized when
it first appeared, and the other is a more-recent and very
interesting paper by Rosser [25], in which the first appli-

cation of the butterfly catastrophe model to stock markets
was proposed.

One of the main reasons, according to Rosser [26], that
catastrophe theory has had such a tough time being ac-
cepted in the economics community is that papers such
as those written by Zahler and Sussmann [27] and Wein-
traub [28] found serious “flaws” in the use of catastrophe
theory in the social sciences. A recent critique of Zahler
and Sussmann and Weintraub by Rosser [26] answers
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Plot of Stock Flow Residuals After Trend Removal
November 1984 thru August 2005
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Residuals of Retail Sales After Trend Removal
November 1984 thru August 2005
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several of these concerns and makes a very good case that,
as Rosser puts it, “the baby was thrown out with the bath
water” when it came to catastrophe theory.

As Rosser mentions in his paper, Cobb et al.’s work
on SCT [13-17] was a major step forward in answering
some of the criticisms put forth in Zahler and Sussmann’s
paper.

Describing Cobb’s work, Wagenmakers et al. [11] write,
“the deterministic behavior (of a single state variable
catastrophe model) can be made stochastic and put in the
form of a stochastic differential equation (SDE) by simply
adding a stochastic Gaussian white noise term dW(t):

de/dt = —dV (x) /dx + o (x) dW (1) /dt. (1)

The deterministic term on the right-hand side, -dV(z)/dx,
is the drift term p(z), while o (z) is the diffusion function,
and W(t) is a Wiener process”.

Paraphrasing some further comments by Wagenmak-
ers et al. on Cobb’s work, under the assumption of additive
noise, i.e., o () is constant and depends only on z, it can
be shown the modes or local maxima of the empirical pdf
correspond to stable equilibrium (Honerkamp [29]). More
generally, there is a simple one-to-one correspondence be-
tween the additive noise SDE and its pdf. Instead of fitting
the drift function of the cusp model directly, one can fit
the pdf.

1

1
4 2
+ =0y“ + « 2
4y 2 Y Y (2)

p(yla, B) = Nexp |-
where N is a normalizing constant. The dependent vari-
able z in equation (1) has been rescaled in equation (2)
by y = (x—A) /o, and o and 8 are linear functions
(the normal and splitting variables, respectively). The

1 11 21 31 41 51 61 71 81 91 101 111121 131 141 151 161 171 181 191 201 211 221 231 241

. 3. Plot of detrended monthly U.S. stock fund net flows and retail sales.

two control variables a and b enter the equation by a =
ko + kia + kob and 3 = lp + l1a + l3b. The parameters
A o, ko, k1, ka,lg,l1, and lo can be estimated using MLE
(Cobb and Watson [30]).

The problem with the above technique, as noted by
Hartelman [7], is that it can lead to an excess of model pa-
rameters. As Hartelman writes, “Therefore, every dataset
can be fitted perfectly to a catastrophe model.” This prob-
lem exists because in practical applications of catastro-
phe theory we have only limited information about the
process, and it is impossible to reconstruct from this in-
formation the complete potential function and its higher
derivatives without making some assumptions.

Hartelman solved this problem by smoothing the data
a la Silverman [31]. The pdf has to be smooth for catas-
trophe theory to be applied unrestrictedly.

Hartelman uses Parzen’s [32] smoother:

7. <y>%g‘;%f<<yhn’fi) ®)

where Y; ¢ =1, ..., n are the observations.

The kernel density estimate — equation (3) — can be
easily generalized to multiple dimensions, and the win-
dow solutions Hartelman discusses also carry over easily
to multi-dimensional cases.

Now, it is obvious the kernel estimate is smooth if the
kernel function K is smooth. Contrary to the paramet-
ric approach of Cobb, Invariant Stochastic Catastrophe
Theory (ISCT) can be applied unrestrictedly to the ker-
nel estimate. This means we can locate degenerate critical
points; determine the Hessian matrix; apply the splitting
lemma; look for symmetries; and ultimately, in the case
of the occurrence of a degenerate critical point, determine
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Table 1. Descriptive statistics of monthly inflation-adjusted and detrended U.S. stock fund flows (November 1984 through
August 2005 (in millions of U.S. dollars)) and daily U.S. stock fund flows (April 3, 2000, through December 30, 2004).

Monthly Stock Fund Net
Flows ($ Millions)

Descriptive Statistics

Daily Stock Fund Net
Flows ($ Millions)

No. of Observations 250 1,140
Mean 8,493.15 -11.9
Median 6,953.0 -29.1
Mode Multiple Multiple
Minimum -50,122.5 -18,307.2
Maximum 41,139.8 13,387.4
Lower Quartile -1,166.8 -1,134.3
Upper Quartile 14930.0 1,013.9
Standard Deviation 13,272.7 2,231.1
Skewness —0.46 3.08
Std. Error of Skewness 0.26 0.08
Kurtosis 3.44 56.57
Std. Error of Kurtosis 0.51 0.16
Level Crossing Function Lereilicno==ingjumction
£ = 2 =
oion _=om00 ; soon aooon Fig. 5. Level crossing function of daily U.S. stock fund net
flows.

Fig. 4. Level crossing function of inflation-adjusted and de-
trended monthly U.S. stock fund flows.

the diffeomorphic transformations that cast the function
locally into a canonical catastrophe function.

Hartelman has bundled most of these tools into three
applications, available at Han van der Maas’s Web site
(http://users.fmg.uva.nl/hvandermaas/).

Taking advantage of Hartelman’s tools, we examine
our flows data — 250 months of U.S. stock fund net flows
and almost five years of daily data. Table 1 details the
descriptive statistics of stock fund flows data on both a
monthly (inflation-adjusted and detrended) basis and on
a daily basis.

Our first test is for multimodality, in particular
bimodality-one of Gilmore’s eight catastrophe flags [22].
We use Hartelman’s level crossing program instead of a
histogram to look for multimodality, since as noted in
Wagenmakers et al. [11] there can be an inconsistency be-
tween the pdf and the invariant function with respect to
the number of stable states. Examples of these inconsis-
tencies are given in Wagenmakers et al. [11]. The monthly
net flows data we use here are the residuals from the Hen-
derson fit to the monthly U.S. stock fund flows data in
Figure 4 and the unadjusted daily stock fund flows data
in Figure 5.

Our net flows data are clearly multimodal, with two
fairly distinct peaks in each case.

Our second test or flag is to look for sudden jumps in
the flows data. Figure 3 above shows sudden jumps in the
monthly U.S. stock fund flows series, while Figure 6 shows
the same for the daily data.

From both Figures 3 and 6 it can be seen that neither
stock function is continuous — and at least is potentially
nonlinear. And, while we think this demonstration of such
potentially discontinuous or nonlinear function can be an
important indicator of catastrophe behavior, we also know
that continuous acceleration models such as higher-order
polynomials and logistic functions can fit a strictly dis-
continuous function as well.

In a third test we make use of Hartelman’s [7] demon-
stration that kernel density estimates® can to be used to
test for bifurcations in the data. We apply Hartelman’s
kernel program to test for bifurcations/degeneracies and
find there is a probability of 0.80 to 0.90 that the flows
data have at least one bifurcation on the monthly side and
0.75 or higher on the daily side.

Finally, we look at three other catastrophe flags —
anomalous variance, critical slowing, and divergence of

5 The kernel program is available at
http://users.fmg.uva.nl/hvandermaas/
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Plot of Daily Stock Flows
April 3,2000 thru December 30,2004
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Fig. 6. Time series plot of daily U.S. stock fund net flows data.
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Fig. 7. Test for anomalous variance

linear response — to see if our flows data exhibit these
qualities as well. In general, anomalous variance means
that variance changes markedly near the transition points.
In Figures 7 (monthly data) and 8 (daily data) we plot
three-month rolling standard deviations of both stock se-
ries over time.

As Figures 7 and 8 show, standard deviation can vary
quite substantially at the transition points.

Looking closely at Figure 8, the reader will note evi-
dence of both divergence of linear response in October of
each year (a large fluctuation building to the transition
point every January) and then a critical slowing near the
transition point, since the system needs time to return to
a stable equilibrium. Note it is often May or June of each
year before the system stabilizes, i.e., before the effect of
the January transition point fully diminishes.

Since Figure 7 does not show the divergence of linear
response and critical slowing as clearly as Figure 8 does,

10/9/1994
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9/19/1999

7/16/2000

5/13/2001
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11/2/2003
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6/26/2005

ates (Monthly)

in monthly U.S. stock fund flows data.

Table 2 is a list of the seasonal factors derived from an
additive X-11 model® applied to the flows data.

As Table 2 shows we again have evidence of both diver-
gence of linear response (large fluctuations near the tran-
sition point every January) and critical slowing (near the
transition point, the system needing more time to return
to stable equilibrium). Note here, as in the daily data, it
is often May or June of each year before the system sta-
bilizes, i.e., before the effect of the high January seasonal
factor fully diminishes.

The only catastrophe flag we have not tested for is
hysteresis, and we do this by comparing a logistic fit of
the retail sales data to a catastrophe model fit. A logistic
model cannot exhibit hysteresis [10], but it can exhibit
arbitrarily fast acceleration.

5 The X-11 model we use is the U.S. Bureau of the Cen-
sus’s X-11 variant of the Census Method II seasonal adjust-
ment procedure available through Statistica®. The seasonal
factors shown assume an additive model with adjustment for
the number of business days in each month.
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Fig. 8. Test for anomalous variance in daily U.S. stock fund flows data.
Table 2. Seasonal Factors for Monthly U.S. Stock Fund Flows Data.
Final seasonal factors: Monthly Stock Data

Year |January \February \ March \ April \ May \ June \ July \ August \Septembr \October \November \December
1984 239.820  -435.922
1985| 507.62 130.72 -4.583  126.97 -106.762 211.002 -156.62 -90.65 -518.775 175.549 147.280  -251.837
1986| 423.40 -8.70/ -56.978 97.13 -29.089 147.351 -53.64 -29.09 -370.401  71.241 173.119, -108.188
1987 | 124.73  -147.52 -4.493 71.25/ 39.039 223.567 -109.02 -18.21  -199.268 -35.684 379.128 29.704
1988 | -235.83 -231.97 -29.303 49.09 118.835 59.071 -7.59 48.21 13.055 -161.122 616.094 210.977
1989 | -854.89 -88.15 -75.185 -107.69 272.548 42.104 -22.74 70.48 141.025 -208.221 739.715 519.000
1990| -1281.59  -150.87 -11.449 -170.07 275.853 -86.523 23.89 340.36 -30.531 -117.536 593.276 804.862
1991 -1509.92 -64.08 113.453 -362.84 248.313 49.228 -315.82 669.81 -353.252 320.274 207.124 858.865
1992 -1299.45 -29.79 312,909 -329.93 -230.155  25.833 -453.28 1140.11 -548.449 511.098 -325.715 931.788
1993| -851.67 -3.66/ 314.660 -269.57 -332.570 -274.501 -562.50 1363.93 -414.538 462.589  -587.191 750.187
1994 9.24 -164.63 18.751 -357.69 -156.902 -682.69C -97.23  1059.96 89.264 206.025  -763.581 307.226
1995| 798.42 -162.75 -397.551 -606.71 404.676 -896.656 598.71 189.48  562.266 -229.107 -261.274 -513.027
1996 | 1410.45 -173.14 -951.531 -490.66 671.196 -493.021 1349.43 -981.06 748.614 -521.440 -57.657  -863.354
1997 | 1604.24  -432.28 -586.553 -252.49 490.886 -168.465 1465.06 -1483.14  742.852 -457.697 -251.705 -643.842
1998 | 2025.05 -1651.64 -100.458 179.26  75.560 872.567 1027.99 -1959.63  512.065 -41.393 -530.021 -159.884
1999| 2253.37 -3065.17 858.500 573.32 65.621 830.783 -33.41 -1376.80 -32.598 314.218 211.945 274.120
2000| 2046.09 -4178.13 781.716 1102.27 221.853 936.749 -970.98 -603.15 -767.139 713.367 959.571 488.632
2001| 1255.19 -4075.73 916.719 1392.53 -68.452] 134.209 -1505.73 355.27 -729.475 744.905 1871.366 646.980
2002| 130.01 -3153.15 290.863 788.06 -75.415 74.507 -1113.8¢ 237.49 -331.002 556.889 2761.410 259.294
2003 | -1202.84 -1371.73  70.532 -58.72 -188.116 -534.655 -355.75 118.98  208.828 -26.632 3971.083 -67.657
2004 | -2690.03 386.65 -368.905 -966.74 -247.407 -390.832 354.37 -114.77 160.590 -154.788 4591.190  -364.567
2005| -3687.41  1769.39 -394.171 -1418.72 -881.628 -300.207  749.62 32.73

4 Model construction and results

In our model-fitting routine we fit the three different mod-
els available in the Hartelman cuspfit” software: a linear
model, a logistic model, and a cusp catastrophe model.
Cuspfit uses log likelihood, AIC, and BIC as the main cri-
teria to judge the better fit. Also, in order to take into
account scale and position of the catastrophe process, a
linear transformation of the data is implemented as in
Wagenmakers et al. [10].

T— A

g

(4)

xr —

" Available at http://users.fmg.uva.nl/hvandermaas

For determining the shape of the cusp catastrophe model,
the program estimates the control parameters « (the nor-
mal variable) and § (the splitting variable) and the loca-
tion and scale parameters A and o.

As for the variables that make up « and 3, i.e., o =
zal+zal+zxa2+zxad+xad+zxaband B = xb0+xbl+xb2+
xb3 4 xb4 + b5, these are the monthly or daily variables
mentioned in Section 2 of this paper.

Hartelman’s cuspfit program allows calculation of the
fits on both an unconstrained and constrained basis. Un-
constrained means all five variables enter on both the nor-
mal and splitting sides, while the constrained tests fix
some of the parameters to zero for the normal variable,
splitting variable, or both.
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Table 3. Results of cuspfit runs on daily U.S. stock fund flows data.

Parameters
Log No. of Fixed at Normal Splitting
Model  Likelihood AIC BIC Parameters Zero Parameter(s) Parameter(s)
Linear -1979 2798.2 2804.5 5 None N/A N/A
Up and Remaining Remaining
Cuspl -5.7x10% -12x10® -1.2x10% 10 down daily daily
NYSE variables variables
volume
Gold fund
flows, all 3 Money
NYSE DJIA return  market fund
Cusp2 -57.3 100.2 103.7 10 variables, prior month flows, bear
bond fund fund flows
flows,
international
stock fund
flows
Logistic -1560 2432.6 2445.8 6 None N/A N/A
Table 4. Results of cuspfit runs on monthly U.S. stock fund flows data.
Parameters
Log No. of Fixed at Normal Splitting
Model  Likelihood AIC BIC Parameters Zero Parameter(s) Parameter(s)
Linear -360.5 730.9 748.5 5 None N/A N/A
Up and Remaining Remaining
down monthly monthly
Cuspl  -2.55 x 10° 5.10 x 10°  5.10 x 10° 10 NYSE variables variables
volume
Retail sales,
NYSE Money
volume, DJIA return  market fund
Cusp2 -10.0 20.0 55.2 10 NYSE up prior month flows, down
volume NYSE
bond fund volume
flows
Logistic -322.0 655.5 676.6 6 None N/A N/A

Rather than showing all the possible fits for the daily
and monthly data, we show the results for the uncon-
strained fit, i.e., all the variables appearing on both sides
of the cusp equation, and then the best constrained fit.

As Table 3 shows, the best performing model for daily
flows is the cusp model (Cusp2), with the DJTA returns
lagged one day the normal variable and the current day’s
money market fund flows and the current day’s bear fund
flows as part of the splitting variable.

Table 4 shows similar results for the monthly data,
with the exception that the NYSE down volume replaces
bear fund flows in the splitting variable. It needs to be
noted that bear fund flows are not a variable we can test
in the monthly model, since these data have been collected
only from 2000 onward. So, our hypothesis is that down
volume in the monthly model is a proxy for a more-direct
sentiment variable such as bear fund flows. We will discuss
later tests that can be done to test for the potential proxy
nature of stock market volume.

So, given the strong similarity of the two models, we
discuss them together and note the differences between
them as needed.

First, each of the catastrophe models is a very good
fit to the data, much better than either the Cuspl or the
logistic models. We think the quality of the Cusp2 fit arises
in part from a judicious choice of variables, which may
cause a bifurcation. What we mean by this is that we
found the DJIA returns lagged one month, and the money
market and bear fund flows had the highest probability of
generating a bifurcation according to Hartelman’s kernel
program.

We also knew from our monthly forecasting model the
variables that had been influencing flows into and out of
stock funds for the past several years. Prior to our use of
ISCT, we had tested many variables to determine the ones
that worked best in our forecasting model — useful in our
catastrophe modeling process.
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We also had the benefit of the work of Brown et al.
and Goetzmann et al. to guide us to the variables that
may work on a daily basis.

Finally, the stock fund flows data on both a monthly
and daily basis were indeed i.i.d. We knew this from our
calculation of the Hurst-Holder exponent and the Aug-
mented Dickey-Fuller test. If the data had been station-
ary and not i.i.d., in particular if the data had shown some
measure of long memory, we would have had a diffusion
process, which could possibly be treated using a gener-
alized Langevin equation but which would have lacked a
Fokker-Planck representation (see Coffey et al. [34])%.

Given the goodness of fit of Cusp2 in both cases, we
have confirmation of the importance of sentiment vari-
ables to stock mutual fund flows. Only one of the vari-
ables is traditionally considered “objective”’—the price, in
our case the return on stocks. Volume variables are clear
measures of sentiment as are bear fund flows. Flows in
and out of money market funds, as demonstrated by both
Goetzmann et al. [4] and Brown et al. [5], are also a sen-
timent variable.

As we noted above, our volume variables may be prox-
ies for other variables such as economic news or volatility
in the market. As is well known, periods of high volatility
are often, though not always, accompanied by periods of
increased selling of stock shares versus buying of the same.
And the effect of news, especially bad economic news, of-
ten plays into what happens to prices and volume. So,
our volume variables could be the manifestation of one or
more latent variables, and we discuss ways of testing for
this in the Conclusions section.

As for money market fund flows there is some discus-
sion (see Goetzmann et al. [4] as an example) of the role
money market fund flows play in determining stock fund
flows. Three potential explanations are often given: (1) in-
vestors are using money funds as checking accounts, pre-
liminary to investing in other assets; (2) investors are pos-
sibly following a common portfolio insurance strategy; or
(3) money flows are reflecting investor sentiment concern-
ing the equity premium.

Unlike Goetzmann et al. [4] we do not find sentiment
about the equity premium to be the prevailing answer to
the importance of money market fund flows because we
do not find gold fund flows being a significant descriptor
in our cusp models. Goetzmann et al. found a significant
negative correlation between flows to stock funds and flows
to gold funds, and this led them to conclude the movement
in and out of money market funds into stock funds was
primarily related to sentiment about the equity premium.
It should be noted that Goetzmann et al. tested just 18
months of daily data, while we used almost five years of
dailies in our computations. In the Conclusion sections we
discuss the impact of this difference.

8 Both Cobb and Hartelman in their development of SCT
solve a Fokker-Planck equation, one using the Ito interpreta-
tion and the other the Stratonovich. Since no Fokker-Planck
equation exists for processes with long memory, Coffey et al.
outline some potential solutions involving the Klein-Kramers
and other equations (pp. 668-669).
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While we did find negative correlation between stock
fund flows and gold fund flows as Goetzmann et al. did,
when we included gold fund flows in our cusp calculations,
none of these cusp models was as good a fit as Cusp2. The
log likelihood, AIC values, and BIC values in the best
model were worse than Cusp2 by a factor of five to ten.
However, it is worth noting that including gold fund flows
in our cusp model did result in a better model than either
the logistic or linear model.

We think the role money market funds play in stock
fund flows is quite possibly tripartite, i.e., it involves all
three uses of money market funds mentioned in the para-
graph above. We do not think there is only one answer
to the question concerning the operation or use of money
market funds and the flows in and out of stock funds. We
think heterogeneity of money market fund flows a la She-
frin [7] plays a significant role on the sentiment side of the
pricing kernel and some form of bi- or multi-modality is
to be expected in this sentiment variable.

A surprising result to us was the insignificance of re-
tail sales in the monthly model. In our one-step-ahead
forecasting model mentioned above, we found lagged re-
tail sales to be a significant descriptor of recent (the last
five years) monthly stock fund flows.

It could be the prominence of retail sales in the last five
years has been due more to the slow growth of real incomes
over the period versus their faster growth in the years prior
to 2000. For example, from 1996 through 1999 both retail
sales and flows into stock funds grew at a good clip, with
real income growth being about 4% per year. And, in the
15 years prior to 1996, income grew at a real annual rate
of more than 2%. In comparison, in the past four years
real income growth has been less than 1% per annum,
so investors may be making the determination more often
these days to either invest or consume. As a matter of fact,
flows into U.S. stock funds over the past 12 months have
been very close to the $10 billion per month estimated
for the regular fund purchases made via 401(k), 403(b),
and other similar plans. That is, individual investors are
making their planned 401(k) et al. investments but do not
appear to be placing any more money than that in mutual
funds.

Finally, we note that we tested both our daily and
monthly variables using a butterfly model versus a cusp
model. We will not detail the construction of the butter-
fly model here, but instead refer readers to Rosser’s [25]
already-cited work. We note, however, the variables in-
cluded in the best-fit butterfly models: normal variable —
the return on the DJIA lagged one month and bear fund
flows (bear fund flows appeared only in the daily model);
splitting variable-money market fund flows; bias variable-
bond fund flows, gold fund flows (in the daily model only),
and down NYSE volume (in the monthly model only);
and the butterfly variable-down NYSE volume (monthly
model only), bond fund flows (in both models), gold fund
flows, and bear fund flows (the last two in the daily model
only).

In the best-fit butterfly model, while the butterfly
model did marginally improve on the Cusp2 model in
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terms of fit — the AIC and BIC for the daily model went
to 92.3 from 100.2, and 94.5 from 103.7, respectively —
we do not have conclusive evidence that switching from a
cusp to a butterfly model is strictly warranted.

Using a test of Wagenmakers and Farrell [33] we get
a sense of how big or small the difference is between the
two catastrophe models. The probability that the butterfly
model is true and Cusp?2 is not, given the BIC results, is:

1
exp (_5 (ABICbutterfly—cusp))/

[exp (% (chbutterﬂy)> + exp <% (BI Ccuspz)ﬂ
(5)

A similar computation can be done using the AIC results.

The computation of the weighted BIC and weighted
AIC results in the daily case favors the butterfly model.
The results are more mixed in the monthly case — the
weighted AIC favors the butterfly, while the weighted BIC
favors the cusp.

We note the butterfly model conforms to Brown et al.’s
and Goetzmann et al.’s findings on the importance of gold
funds and bond funds in understanding daily stock flows.
However, they did not test monthly data, and our monthly
data cover a 20-plus year period. We suggest in the Con-
clusions section a way of confirming or falsifying the Cusp2
model for the daily periods.

5 Conclusions

By applying Hartelman’s [7], Wagenmakers et al.’s [10,11],
and others’ recent work on invariant stochastic catastro-
phe theory, we have been able to demonstrate the impor-
tance of catastrophe theory for understanding the deter-
minants of U.S. stock mutual fund flows.

The Cusp2 models provide better descriptions of the
stock fund flows data than does a linear or logistic model.
And while we have evidence that a butterfly model may
better describe the daily data, the results for the monthly
data are inconclusive, pointing to the need for more tests.

The Cusp2 models also confirm to a large extent the
work of Goetzmann et al. [4] and Brown et al. [5] con-
cerning the importance of sentiment on mutual fund net
flows. And, given our success in using catastrophe mod-
els, we think the search for a priceable sentiment factor
by both Brown et al. and Goetzmann et al. would benefit
from a nonlinear approach. As Goetzmann et al. note, “In
the analysis below, we find that behavioral factors are not
captured by a linear combination of return portfolios.””

As we mentioned in the Introduction to this paper, we
think sentiment variables enter into asset pricing models
via the pricing kernel or stochastic discount factor, and as
Shefrin [12] notes sentiment is part of that pricing kernel.
We think the evolution of sentiment is best modeled us-
ing the SDEs related to elementary catastrophe theory as

% Op. cit., p. 15.
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developed by Cobb, Hartelman, and others, as long as the
process under study is stationary and i.i.d.

As a follow-up to our catastrophe models we suggest
experimental economists or sociophysicists try to verify
our cusp modeling results by: (1) testing the savings fac-
tor in an environment where a fixed portion of earnings
is already committed to investment, e.g., 401(k) contri-
butions, and then vary the growth of income and stock
market returns to see if or when incremental purchases of
securities start to kick-in; (2) attempting to find out the
function of money market funds in terms of flows in and
out of stock funds, i.e., are they primarily checking ac-
counts, future equity premium views, portfolio insurance,
or some combination of the three (Shefrin’s multimodality
assumption); (3) determining whether volume is a proxy
for one or more (latent) variables such as volatility or is
indeed a factor unto itself; and (4) determining if gold
funds and bond funds play a significant role in the flows
in or out of stock funds as the butterfly model implies.
Evidence in favor of the daily butterfly model seems to
indicate this. One way of improving on our results would
be to lengthen the daily period looked at by both this au-
thor and Goetzmann et al.. Both have been working with
recent daily data (the past five to seven years of market
flows), so a longer historical record may help settle the
question of cusp versus butterfly.

The author would like to thank Lipper’s Don Cassidy, whose
knowledge of mutual fund flows was of immense help. The au-
thor would also like to thank Dr. van der Maas for supplying a
copy of Hartelman’s dissertation and for making Hartelman’s
catastrophe theory tools available on his Web site. And thanks
to DPR for all the encouragement he has given me during my
studies.
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